Numerical pricing of discrete barrier and lookback options via Laplace transforms
نویسندگان
چکیده
URL: www.thejournalofcomputationalfinance.com Most contracts of barrier and lookback options specify discrete monitoring policies. However, unlike their continuous counterparts, discrete barrier and lookback options essentially have no analytical solution. For a broad class of models, including the classical Brownian model and jump-diffusion models, we show that the Laplace transforms of discrete barrier and lookback options can be obtained via a recursion involving only analytical formulae of standard European call and put options, thanks to Spitzer’s formula. The Laplace transforms can be numerically inverted to get option prices fast and accurately. Furthermore, the same method can be used to compute the hedging parameters (the greeks) of these products.
منابع مشابه
Discrete Barrier and Lookback Options
Discrete barrier and lookback options are among the most popular path-dependent options in markets. However, due to the discrete monitoring policy almost no analytical solutions are available for them. We shall focus on the following methods for discrete barrier and lookback option prices: (1) Broadie–Yamamoto method based on fast Gaussian transforms. (2) Feng–Linetsky method based on Hilbert t...
متن کاملJump-Diffusion Models for Asset Pricing in Financial Engineering
In this survey we shall focus on the following issues related to jump-diffusion models for asset pricing in financial engineering. (1) The controversy over tailweight of distributions. (2) Identifying a risk-neutral pricing measure by using the rational expectations equilibrium. (3) Using Laplace transforms to pricing options, including European call/put options, path-dependent options, such as...
متن کاملPricing and hedging of lookback options in hyper-exponential jump diffusion models
In this article we consider the problem of pricing lookback options in certain exponential Lévy market models. While in the classic Black-Scholes models the price of such options can be calculated in closed form, for more general asset price model one typically has to rely on (rather time-intense) MonteCarlo or P(I)DE methods. However, for Lévy processes with double exponentially distributed ju...
متن کاملOption Pricing Under a Mixed-Exponential Jump Diffusion Model
This paper aims at extending the analytical tractability of the Black-Scholes model to alternative models with arbitrary jump size distributions. More precisely, we propose a jump diffusion model for asset prices whose jump sizes have a mixed-exponential distribution, which is a weighted average of exponential distributions but with possibly negative weights. The new model extends existing mode...
متن کاملFirst Passage times of a Jump Diffusion Process
This paper studies the first passage times to flat boundaries for a double exponential jump diffusion process, which consists of a continuous part driven by a Brownian motion and a jump part with jump sizes having a double exponential distribution. Explicit solutions of the Laplace transforms, of both the distribution of the first passage times and the joint distribution of the process and its ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004